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Abstract

Surrogate-based black-box attacks train a surrogate net-
work to imitate the black-box target and attack the trained
surrogate with white-box attacks to craft adversarial exam-
ples. These attacks have gained tremendous attention be-
cause of their practical setup, where an attacker can at-
tack any samples by only accessing the target for a limited
number of samples during the surrogate training. However,
surrogate-based attacks suffer from low success rates. We
investigate the reason behind their low success rates and
demonstrate that surrogate training methods fail to achieve
high fidelity to the target, i.e., learn a functionally equiva-
lent surrogate to the target that mimics the target outputs
for every input, through empirical and theoretical analy-
sis. Inspired by these results, we propose to rethink the
surrogate-based attacks: instead of aiming to train surro-
gates with high fidelity to the target, we ask if character-
istics of adversarial examples can be used as guiding sig-
nals to strengthen the attack. We then propose a framework
to obtain the characteristics of adversarial examples and
a novel plug-and-play adversarial objective that enforces
the adversarial characteristics into the existing white-box
attacks. Our approach results in attacks with remarkably
higher attack success rates than the state-of-the-arts on var-
ious targets and datasets.

1. Introduction

The emerging deployment of Deep Neural Networks
(DNNs) in safety- and security-sensitive applications [3]
has been hindered by their vulnerability to adversarial ex-
amples, imperceptibly perturbed samples that lead to erro-
neous predictions [25]. Studying strong practical attacks is
essential for understanding the vulnerability of these net-
works and robustifing them before real-world deployment.

Depending on the information available to the adver-
sary, the adversarial attacks are white-box or black-box. In
white-box attacks, the adversary has full access to the tar-
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Figure 1. Kernel Density Estimation (KDE) plots for the distribu-
tion of boundary losses on CIFAR-10 (right) and CIFAR-100 (left)
datasets. The dashed line represents the median boundary loss.

get, including its parameters and architecture, and uses the
target’s gradients to generate the attack [1, 7]. In black-box
attacks, the target is only accessible through their feedback
to queries, which is more practical and realistic. Black-
box attacks are classified into query-based and surrogate-
based attacks. Query-based attacks query the target for each
sample numerous times during the attack [10, 16]. Despite
achieving high success rates, these attacks have limited real-
world practicality due to requiring a query budget to the
number of attacked samples, which is not feasible in a real-
world setting due to limited inference time or monetary lim-
its [10, 12].

Surrogate-based attacks, on the other hand, provide a
more practical attacking scenario. These attacks are de-
signed to attack any sample with access to the target’s feed-
back for only a limited number of samples. The idea be-
hind these attacks is to train a surrogate on queried sam-
ples and their target feedback to imitate the black-box tar-
get. Once trained, the surrogate is used to attack any sam-
ple. Since these attacks only query the target during the
surrogate training, they are more practical and desirable for
real-world applications.

However, existing surrogate-based attacks suffer from
low success rates [12]. We revisit the surrogate training
of state-of-the-art surrogate-based attacks and demonstrate
that the low fidelity of their trained surrogate to the target
(i.e., their failure to mimic the target’s output for every in-
put) is the reason behind their low success rates. Spurred by
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this result and motivated by the theoretical evidence of the
unfeasibility of learning high-fidelity surrogates (provided
in Sec. 3.3), we propose a new perspective on surrogate-
based attacks. Instead of aiming for the impossible im-
provement of the surrogate training to achieve high fidelity
to the target as in existing methods [24, 28], we propose to
reinforce the attacks applied on the trained surrogate with an
additional signal. One possible guiding signal is the charac-
teristics of adversarial examples, i.e., how the adversarial
examples should look like? Characteristics of adversarial
examples can be obtained from their distributions. How-
ever, learning the distributions of all adversarial examples
requires an exponential number of adversarial examples,
each requiring numerous queries to the target, which is im-
possible under the black-box setting. Luckily, a successful
attack is only required to identify some of the adversarial
examples, not all of them. We observe that a decent portion
of adversarial examples resides extremely close to/on the
target’s decision boundaries (i.e., their boundary losses are
close to zero), as shown in Figure 1(details of the analysis
are described in Appendix). Hence, we propose to lever-
age the distribution of samples close to/on the target’s de-
cision boundaries as a proxy for adversarial examples dis-
tributions. Note that even though this distribution contains
some real examples as well (as also shown in Figure 1), the
synergy between the attack on the surrogate and the char-
acteristics of potential adversarial examples is sufficient to
effectively guide the adversarial attack. The potential ad-
versarial example characteristics compensate for the inac-
curacy of the surrogate while the feedback from the surro-
gate helps find the real adversarial examples from the dis-
tribution of potential adversarial examples. We henceforth,
propose to use this distribution to obtain the guiding signal
and call it the potential adversarial examples distribution.

To materialize this idea, we propose a GAN-based ar-
chitecture to model the distribution of potential adversarial
examples. We propose a novel inter-class similarity loss
to ensure the distribution is learned for the samples close
to/on the target’s decision boundaries for all classes. To pre-
vent the model from mode collapse and ensure it learns the
distribution effectively, we additionally propose an intra-
class diversity loss, which promotes the diversity of samples
generated by the model. Furthermore, we propose a novel
plug-and-play adversarial objective that enforces the char-
acteristics of the adversarial examples as a guiding signal
by forcing the generated example in each attack iteration to
resemble the characteristics of that distribution. This guid-
ing signal and the misclassification constraint enforced via
the surrogate synergistically guide the attack objective to-
wards learning successful adversarial examples, while com-
pensating for the inaccuracy in surrogate training. Our ex-
periments demonstrate the effectiveness of our proposed
method in identifying highly successful adversarial exam-

ples in both targeted and untargeted settings for various
datasets and target models. Our contributions are summa-
rized as follows:
• We explain the reason for low success rates of the

surrogate-based attacks through empirical and theoretical
analysis of the state-of-the-art (SOTA) surrogate-based
attacks’ failure.

• We propose a novel perspective on surrogate-based at-
tacks. Instead of training a more accurate surrogate, we
propose a novel plug-and-play adversarial objective. Our
objective strengthens the attack by considering the poten-
tial characteristics of the adversarial examples.

• We identify the characteristics of the adversarial exam-
ples, and model them by learning the distribution of ex-
amples that reside close to the targets’ decision boundary
while possessing intra-class diversity.

• We design experiments to validate if our proposed attack
achieves significantly higher attack success rates com-
pared to the SOTAs.

2. Related Work
Adversarial Attacks. White-box adversarial attacks re-
quire full access to the target to craft the adversarial attacks,
which significantly limits their real-world utility [1, 7, 13].
Black-box attacks adopt a more practical setting, allowing
access only through queries. These attacks are divided into
query-based and surrogate-based categories. Query-based
attacks estimate target gradients dynamically for each sam-
ple during the attack [2, 8]. These attacks require querying
the target multiple times for each sample, rendering them
inefficient for real-world scenarios with query constraints.
In contrast, surrogate-based attacks train a surrogate net-
work for the black-box target, aiming to replicate its be-
havior. Once trained, this surrogate is subjected to attacks
to generate adversarial examples, which are used for the
black-box target. Surrogate-based attacks are the only vi-
able option when queries are restricted during attacks. Our
proposed framework falls under this category, aiming for
practicality in real-world situations.

Surrogate-based Attacks. Existing surrogate-based at-
tacks aim to train more accurate surrogate models via im-
proved surrogate training methods. Papernot et al. [20] pro-
pose to train a surrogate that imitates the target’s output for
synthetic images. Orekondy et al. [19] propose to lever-
age the real and proxy images to steal the target behavior.
Recently, a series of works have been developed to gen-
erate effective synthetic input data to exploit the decision
boundaries of the targets and train more accurate surrogate
networks [24, 28, 31]. Another approach involves training
generative surrogates to capture input-output joint distribu-
tions [17]. Different from the prior work, we propose to
strengthen the attack on the trained surrogate with a guiding
signal, i.e., characteristics of adversarial examples to com-
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pensate for the low fidelity of the surrogates to the target.
Generative Models for Adversarial Attacks. Besides

their application in generating effective data for surrogate-
based attacks, generative models have been adopted for ad-
versarial attacks under different settings. In the white-box
setting, Xiao et al. [29] propose a GAN-based architec-
ture to learn the distribution of the adversarial perturba-
tions [29]. In the query-based setting, Dolatabadi et al. [14]
propose to model the distribution of potential adversarial
examples for each sample individually using normalizing
flow. Generative models have also been used to improve
the transferability of adversarial examples by crafting more
transferable adversarial perturbations [18, 22]. Our method
proposes a GAN-based architecture to model the character-
istics of adversarial examples.

3. Methodology

3.1. Attack Setting

Our attack is performed under the surrogate-based black-
box setting, where the attacker can access the target feed-
back for a limited number of samples. In terms of the tar-
get response, we will have two scenarios: (1) Label-only
Scenario: denoted by “-L” suffix, in this setting the target
returns the output labels of the classes for the queries sam-
ples; (2) Probability-only Scenario: , the target returns the
output class probabilities. We denote this by “-P” suffix.

3.2. Surrogate-based Solution to Black-box Attacks

Let C(.) : x ∈ [0, 1]d → y ∈ Rc be a target classifier, and
(x, y) denote a pair of input image and its true label. An
adversarial attack imperceptibly perturbs x into the adver-
sarial example xadv , such that it is misclassified by the C:

argmin
xadv

f(xadv, t)

s.t. ∥xadv − x∥p ≤ δ,
(1)

where f is the adversarial objective which measures the de-
gree of uncertainty of C in assigning xadv to class t. The lp
norm (∥.∥p), p ∈ {2,∞} is used to measure the difference
between the original and adversarial examples.

Surrogate-based black-box attacks train a surrogate on a
dataset obtained by querying the target with the given set of
data samples to imitate the target behavior. The trained sur-
rogate will be attacked with existing white-box attacks for
any given sample. The effectiveness of existing surrogate-
based attacks depends on the fidelity of their trained surro-
gates to the target, i.e., how accurately the surrogate imi-
tates the target’s functionality. In the following, we provide
empirical and theoretical evidence that surrogate training
methods do not achieve high fidelity to the target.
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(a) Resnet-20 on CIFAR-10
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(b) VGG-19 on CIFAR-100

Figure 2. Demonstration of the Accuracy, Agreement (measure of
agreement of the surrogate with target), untargeted and targeted
attack success rates on different surrogates.

3.3. Surrogate training methods fail to accurately
mimic the black-box target

To investigate the reason behind the low success rates of
surrogate-based attacks, we plot their surrogates’ accuracy
(fraction of samples predicted correctly), agreement accu-
racy (fraction of samples that are assigned to the same pre-
dictions as the targets’ predictions by the surrogate), un-
targeted attack success rates (fraction of samples that are
misclassified after the attack), and targeted success rates
(fraction of samples that are misclassified to a pre-specified
class after the attack) for the state-of-the-art surrogate-based
models DAST [31], ST-Data [24], DFTA [30], and our
framework (IGSA). From the results shown in Figure 2,
we make the following observation: despite achieving high
accuracy (from 60% to more than 90%), SOTA surrogate-
based attacks’ surrogate obtain extremely low agreement
accuracy (less than 20%). This indicates that the surrogate
training methods of these attacks fail to train surrogates that
accurately mimic the target’s outputs. This gives rise to an
important question: How difficult it is to train a surrogate
with high fidelity to the target? Drawing the ideas from
model extraction, the following Proposition demonstrates
extracting high-fidelity networks can require an exponential
number of queries in the depth of the network.

Proposition 1 (Informal [5]) Random deep network of
depth h with domain {0, 1}d (d is the input dimension)
and range {0, 1} learned with any Statistical Query (SQ)
algorithm such as (stochastic) gradient descent require
exp (O(h)) samples to learn.

Proposition 1 implies that training a high-fidelity sur-
rogate to the target is impossible without an exponential
number of queries, which is not feasible under the practi-
cal black-box setting with only a limited query budget.

Theoretically proven to be infeasible to train high-
fidelity surrogates to the target, we propose a new perspec-
tive on surrogate-based attacks to compensate for the lack
of surrogate fidelity to the target: instead of aiming for im-
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Figure 3. An overview of step 1 of the IGSA: modeling the dis-
tribution of potential adversarial examples and surrogate training.
The generator is trained to learn the distribution of examples re-
siding close to/on the target decision boundaries via optimizing
Eq. (6). The surrogate is simultaneously trained via Eq. (7). Once
trained, the surrogate is attacked with a novel attack strategy which
is an augmentation of existing white-box attacks with external sig-
nal coming from the generator.

proved surrogate training methods, we propose to reinforce
the attack on the surrogate with a guiding signal,i.e., the
characteristics of adversarial examples. In the following,
we propose a framework to obtain the characteristics of ad-
versarial examples and then propose a novel plug-and-play
attack that strengthens the attack by forcing the generated
adversarial examples to acquire these characteristics.

3.4. Proposed Method

3.4.1 Framework Overview

We introduce our proposed surrogate-based black-box at-
tack, termed IGSA, as illustrated in Figure 3. IGSA com-
pensates for the lower-fidelity surrogate by taking the char-
acteristics of adversarial examples into account during the
attack. Particularly, IGSA consists of two steps: (S1) Model
the distribution of potentially adversarial examples and sur-
rogate training: building upon our analysis in Sec. 1, this
step aims to model the distribution of potential adversar-
ial examples, i.e., examples that are extremely close to/on
the target’s decision boundaries, to obtain the characteristics
of adversarial examples. Moreover, it trains a surrogate on
samples drawn from this distribution and queried from the
target;(S2) propose a novel attack strategy: this step pro-
poses a plug-and-play attack objective that forces the attack
to craft samples with the characteristics of adversarial ex-
amples obtained from the previous step.

3.4.2 Modeling the distribution of Potential Adversar-
ial Examples and Surrogate training

The goal of this step is two-fold: (1) characterize the dis-
tribution of potentially adversarial examples; and (2) train

a surrogate network that mimics the behavior of the tar-
get around its decision boundaries as accurately as possi-
ble. Fortunately, these two goals are inline with each other.
In other words, the distribution of potentially adversarial
examples also possess characteristics of the useful data re-
quired for training surrogates to capture the behavior of the
target. Therefore, we propose a holistic framework that per-
forms these two tasks simultaneously: it models the distri-
butions of potential adversarial examples and trains a sur-
rogate on samples drawn from the distributions and their
corresponding labels queried from the target.

In particular, based on our analysis in Sec. 1, poten-
tial adversarial examples possess two characteristics: (1)
high inter-class similarity: they reside extremely close to/on
the decision boundaries of the target model; (2) high intra-
class diversity: the distribution of potential adversarial ex-
amples is required to generate samples that are diversely
scattered across all intersections of decision boundaries for
all classes. This is particularly important for the targeted
attacks which require the adversarial examples to be mis-
classified as a specific target class, i.e., cross the decision
boundary between the original and targeted class.

Learning the distribution To simultaneously learn the
distribution of potentially adversarial examples while train-
ing the surrogate with the inputs sampled from those distri-
butions, we propose a triple-player Generative Adversarial
Network (GAN)-based architecture. Our architecture con-
sists of a generator (G), a discriminator (D), and a surrogate
network (S). The generator (G) is responsible for modeling
the distribution of potentially adversarial examples, as well
as providing the data samples used to train the surrogate.
It takes a set of random noise z and a vector of all possi-
ble labels Y = {0, 1, 2 . . . C} (C is the number of classes)
and outputs X = G(z, Y ), a set of input images for each
class. The realisticness of the generated examples is en-
sured by feeding them to a discriminator D and optimizing
the vanilla GAN adversarial objectives [6]:

LD = E
x∼Pd

[logD(x)] + E
x̃∼Pg

[log(1−D(G(z, Y ))],

LGAN = E
x̃∼Pg

[log(1−D(G(z, Y ))].
(2)

To ensure the distribution learned by the generator rep-
resents potential adversarial examples, which are realistic
looking, we utilize a mixture of the real clean samples
and their corresponding adversarial examples to optimize
the objective. The adversarial examples are generated via
DeepFool attack [15] (which is different from the white-box
attacks used for the experiments) on the surrogate. Note that
our framework requires a clean dataset that has the same
class labels as the target’s training dataset. We demon-
strate in our experiment that the distribution of samples does
not have a noticeable effect on the IGSA’s performance
(Sec. 4.3.1). To guarantee that generated samples will be
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assigned the same labels by the surrogate, we extend our
adversarial loss with the following loss [24]:

Ly
cnt = CE(S(G(z,Y)), Y ), (3)

where CE is the cross-entropy loss, S is the surrogate net-
work and Y are the labels fed to the generator.

Optimizing Eq. (2) learns the distribution of samples
scattered everywhere in the input space. To restrict the dis-
tribution to samples close to the target’s decision boundaries
and guarantee their diversity, we propose two novel Inter-
class Similarity and Intra-class Diversity losses.

Inter-class Similarity Loss To restrict the learned dis-
tribution to samples close to/on the target’s decision bound-
aries, we propose an inter-class similarity loss that measures
the generated sample’s distance to its decision boundary and
how close it is to crossing it (i.e., be misclassifed to the clos-
est class across the original decision boundary). We use the
loss based on the C&W objective to measure the degree to
which the samples are likely to be misclassified as in [24]:

Ly
sim = max

j ̸=y
log S(x)j − log S(x)y, (4)

where S(x)j is the probability of the j-th class assigned to
x by S, and y is the original class label. Minimizing Eq. (4)
decreases the sample’s probability of being classified as the
original class by pushing it towards the nearest class’s deci-
sion boundary.

Intra-class Diversity Loss The distribution of poten-
tially adversarial examples for each class is required to
cover the entire decision boundary and its intersections with
all possible classes. Eq. (2), Eq. (3), and Eq. (4) do not ex-
plicitly promote this diversity. On the other hand, GAN’s
training is prone to mode collapse [26], making it more
likely to not learn the desired distribution. We propose a
novel intra-class diversity loss to promote the diversity of
samples. In particular, the inter-class similarity objective
(Eq. (4)), which forces the samples to be close to decision
boundaries, makes the samples have nearly-equal highest
and second-highest class probabilities. The second-highest
probabilities represent the class with which samples share
the decision boundaries. If samples are evenly scattered
across decision boundaries, their second-highest probability
is also evenly distributed on average. This can be measured
by the information-entropy of a vector of average probabil-
ities of all classes except for the original one:

Ly
div = H(

1

N

N∑
i

Si
c:0...C ̸=y(x)), (5)

where H(P ) = − 1
K

∑K
i pi is the information-entropy of

probability vector P = {p1, p2, . . . pk}, and Si
c:0...C ̸=y(.)

the probability vector of sample i except for the highest
class probability.

Generator Optimization Our final objective is a linear
combination of Eq. (2), Eq. (3), Eq. (4), and Eq. (5):

LG = LGAN + α1Ly
cnt + α2Ly

sim + α2Ly
div. (6)

The discriminator will be optimized using the Eq. (2).
Surrogate Training Despite infeasibility of learning

functionally equivalent surrogate, we aim to learn a surro-
gate that mimics the target as accurately as possible. To this
end, we adopt a knowledge distillation loss, which can be
used to force the surrogate to imitate the target’s output on a
given set of inputs [28, 31]. Formally, given a set of samples
X generated by the generator G, we minimize the distance
between the surrogate and target’s outputs:

LS = dist(S(X), T (X)), (7)

where dist(.) is a function to measure the distance between
the Surrogate S and the target T’s outputs on samples X .
In the Label-only scenario, the distance is measured via the
Cross Entropy (CE) loss between the class labels produces
by the target and surrogate, while in the probability-only
scenario it will be measured via the l2-norm of the differ-
ence between the probability outputs ∥T (X)− S(X)∥22.

3.4.3 Proposed Attack

In this section, we explain how to obtain and incorporate
the adversarial example characteristics from the potential
adversarial example distributions (learned in the previous
step) to reinforce the attack on the surrogate. To ensure a
sample possesses the characteristics of a distribution, we
need to maximize the probability of the sample belonging
to that distribution. The GAN-based generator does not
explicitly model the distribution density and only provides
samples from the distribution. As a proxy to measure the
likelihood of samples belonging to the distribution of gen-
erator G, we propose a reconstruction-based loss that mea-
sures the distance between the closest sample generated by
the generator G and the generated adversarial example:

argmin
x∗
y=G(Z∗,y)

∥G(Z∗, y)− xadv∥, (8)

In the untargeted setting, where the adversarial example
is only required to be misclassified, we identify the closest
sample x∗

y for all classes y = 0, . . . C to the example gen-
erated by the white-box attack (Eq. (1)) using Eq. (8) and
force the generated adversarial example to be similar to the
one with the closest distance:

Ldata = ∥xadv − x∗
y∥. (9)

In the targeted setting, the adversarial example is re-
quired to be misclassified as a pre-selected target class t.
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Table 1. Experimental results of untargeted and targeted attack on CIFAR-10, CIFAR-100, and Tiny-ImageNet datasets. Best results are in
bold and second-best results are underlined.

Untargeted Targeted

Type Dataset CIFAR-10 CIFAR-100 Tiny-ImageNet CIFAR-10 CIFAR-100 Tiny-ImageNet

Attack AlexNet ResNet-20 VGG-16 ResNet-50 VGG-19 ResNet-50 AlexNet ResNet-20 VGG-16 ResNet-50 VGG-19 ResNet-50

Pr
ob

ab
ili

ty
-O

nl
y IGSA-P 90.8% 89.5% 84.9% 93.9% 85.1% 91.9% 60.8% 73.1% 62.9% 57.9% 55.8% 58.3%

TDB-P [17] 75% 83.5% 80.1% 78.2% 74.1% 77.6% 42.3% 42.1% 47.8% 39.7% 38.8% 39.2%

DFTA-P [30] 65.4% 81.5% 78.1% 73.6% 63.1% 69.1% 30.9% 40.8% 38.3% 33.3% 32.7% 33.4%
ST-Data-P [24] 67.4% 74.8% 75.0% 66.1% 58.2% 64.9% 37.8% 40.9% 44.3% 35.4% 32.3% 30.1%
DAST-P [31] 52.0% 51.1% 53.2% 69.7% 52.3% 70.8% 37.1% 39.1% 38.6% 34.4% 34.5% 33.8%

Knock-off-P [19] 37.4% 28.5% 28.0% 27.3% 25.1% 25.6% 22.7% 17.1% 17.9% 19.0% 13.1% 13.8%
JBDA-P [20] 35.1% 23.6% 19.9% 21.9% 20.1% 14.7% 16.4% 15.1% 15.3% 14.0% 9.2% 11.2%

L
ab

el
-O

nl
y

IGSA-L 82.8% 93.9% 88.7% 94.2% 94.2% 86.9% 59.9% 70.2% 64.1% 57.2% 56.7% 57.1%

TDB-L [17] 74.7% 80.5% 81.2% 76.1% 75.1% 75.4% 40.9% 41.2% 45.7% 39.1% 35.7% 38.1%

DFTA-L [30] 63.8% 70.6% 77.5% 74.9% 57.1% 73.8% 34.1% 36.5% 39.3% 30.8% 31.4% 27.1%
ST-Data-L [24] 63.9% 70.0% 71.3% 65.8% 58.2% 65.2% 35.1% 34.9% 39.1% 32.7% 28.9% 34.1%
DAST-L [31] 54.6% 49.1% 53.2% 62.8% 49.1% 59.9% 38.1% 40.1% 38.8% 31.4% 32.7% 31.1%

Knock-off-L [19] 33.2% 24.1% 29.7% 24.1% 26.0% 16.6% 21.9% 15.2% 18.3% 19.1% 12.4% 12.7%
JBDA-L [20] 35.6% 23.9% 19.5% 22.1% 19.1% 11.8% 16.2% 14.7% 13.8% 14.9% 7.6% 4.8%

In each attack iteration, the generated adversarial example
is forced to be closest to the most similar sample (x∗

t gener-
ated with Eq. (8)) generated from the distribution of poten-
tial adversarial examples for the class t.

The final objective of the attack is as follows:

L∗
att = Latt + λLdata, (10)

where Latt can be any existing white-box attack.

4. Experiments
We examine three main aspects of IGSA: (1) IGSA’s per-
formance compared with the state-of-the-arts under the un-
targeted and targeted settings; (2) Ablation and parameter
study of IGSA; and (3) Qualitative analysis of the IGSA.

4.1. Experimental Setting

4.1.1 Dataset, Target Models, and Whitebox attacks

We utilize three widely-used datasets, namely CIFAR-
10 [11], CIFAR-100 [11], and Tiny-ImageNet [21]. Mi-
crosoft Azure experiments are provided in the Appendix.
Following previous research on black-box attacks [28, 31],
we select correctly classified samples in the untargeted set-
ting, and samples not classified as the target class in the tar-
geted setting from the test set of the datasets to attack. For
the target architectures, we adopt AlexNet [11], ResNet-
20 [9], VGG-16 [23] for CIFAR-10, ResNet-50 [9] and
VGG-19 [23] for CIFAR-100, and ResNet-50 [9] for Tiny-
ImageNet as used by the state-of-the-arts [24, 28, 30]. To
demonstrate the performance of the proposed plug-and-play
attack, we adopt three commonly-used white-box attack
methods as our Latt, namely FGSM [7], C&W [1], and
PGD [13]. We use C&W as our default attack method un-
less otherwise mentioned.

4.1.2 Implementation Details

Our experiments are conducted for targeted and untargeted
scenarios under l2 norm. In the targeted setting, we select
the target adversarial class as yadv = (yorig + 1) mode c,
where yadv is the target adversarial class, yorig is the origi-
nal class and “c” is the total number of classes in the dataset.

IGSA’s architecture consists of a generator, a discrimi-
nator, and a surrogate. For the generator and discriminator,
we use the same architecture used by [31]. For the surro-
gate architecture, we use VGG-13 for the CIFAR-10 and
Resnet-18 for CIFAR-100 and Tiny-ImageNet. Note that
our surrogates are not initialized with pre-trained weights
and are trained from scratch. This is to ensure that no prior
knowledge of the target is used to conduct the attack. The
training set of the attacked dataset is used to train the IGSA,
which is completely disjoint from the test sets used to con-
duct the attack. We use ADAM optimizer to train all of our
networks. We use mini-batch size of 500 for CIFAR-10. For
CIFAR-100 and Tiny-ImageNet datasets, which have more
class categories, we use a bigger mini-batch size of 1000 to
achieve a higher diversity of generated samples. We limit
the query budget during the surrogate training for all meth-
ods to 4M (million) for all methods. The training hyper-
parameters in Eq.(6), α1 = 1, α2 = 1, and α3 = 1. λ , the
attack hyper-parameter in Eq.(10), is selected by varying the
parameter in range {0.5, 1.0, 2.0, 5.0}. For all baselines, we
use publicly available implementations and strictly follow
their default experimental setups.

4.1.3 Compared State-of-the-art Methods

We compare our performance with three types of state-
of-the-art methods: (i) Attacks with generative surrogate:
TDB [17] trains a generative surrogate to mimic the joint
distribution of the target on (input, output) pairs; (ii) At-
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Table 2. Experimental results of Ablation Study on CIFAR-10 and CIFAR-100 datasets on Resnet-20 and VGG-19, respectively.

Probability-Only Label-Only

Type
Data

CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

Base ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
+Ly

sim ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
+Ly

div ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Untargeted 69.1% 71.2% 81.5% 75.0% 89.5% 67.6% 70.1% 78.7% 74.3% 85.1% 72.2% 75.1% 83.9% 79.1% 93.9% 68.1% 75.6% 82.9% 77.4% 94.2%
Targeted 46.7% 50.2% 62.1% 55.8% 73.1% 32.4% 35.1% 47.2% 41.0% 55.8% 49.2% 50.1% 59.5% 55.6% 70.2% 33.2% 34.9% 45.3% 40.1% 56.7%

IGSA DFTA ST_DATA DAST
Attack Type

0

10

20

30

40

50

60

70

80

A
S

R
 (

%
)

CW PGD FGSM

(a) Attack Ablation on CIFAR-10

IGSA DFTA ST_DATA DAST
Attack Type

0

20

40

60

80

A
S

R
 (

%
)

CW PGD FGSM

(b) Attack Ablation on CIFAR-100

0.0 0.5 1.0 2.0 5.0
lambda

10

20

30

40

50

60

70

80

90

100

AS
R

(%
)

CIFAR-10 CIFAR-100

(c) Parameter Analysis

CIFAR-10 CINIC-10

CI
FA

R-
10

CI
NI

C-
10

85 81

84 83

81

82

83

84

(d) Data Ablation Study

Figure 4. Attack ablation and parameter study on CIFAR-10 and
CIFAR-100 on VGG-16 and Resnet-50, respectively.

tacks with discriminative surrogates trained on the genera-
tor data: Different from our IGSA, they use the generator
to generate the input data to query the target and craft a
dataset to train the discriminative surrogate. The surrogate
aims to generate the same output as the target for the given
dataset. The difference between these methods originates
from the quality of the data generated by their generator.
DFTA [30], ST-Data [24], and DAST [31] are the state-of-
the-arts in this category; and (iii) Attacks with discrimina-
tive surrogates trained on traditionally selected data: these
attacks augment or select data from a given dataset to train
a discriminative surrogate. JBDA [20] and Knock-off [19]
are two representative methods in this category.

4.2. Comparison with State-of-the-Art Attacks

We evaluate the performance of IGSA and the state-of-the-
art surrogate-based attacks under the untargeted and tar-
geted settings and report the results in Table 1. Our results
indicate that overall the IGSA significantly outperforms all
state-of-the-arts with over 20% of improvement on the aver-
age. This validates the effectiveness of utilizing the poten-
tial adversarial example distribution’s feedback in improv-
ing the attack’s success rate. Moreover, the improvement

is more evident in the targeted setting, where the high fi-
delity of surrogates is necessary but impossible to achieve.
In this case, the role of reinforcing the attack with a guid-
ing signal, i.e., characteristics of adversarial examples, is
more prominent. In the following, we elaborate on our
in-depth observations: (1) Discriminative surrogate-based
attacks trained on traditionally selected data, i.e., JDBA
and Knock-off demonstrate the worst performance in all
cases. This is because traditionally selected data are not
representative of the data distribution near the target’s deci-
sion boundaries, resulting in surrogates that fail to mimic
the target’s prediction, thus have low agreement; (2) At-
tacks with discriminative surrogates trained on the gener-
ator data, namely, DFTA, ST-Data, and DAST outperform
the discriminative attacks trained on the traditional data, i.e.,
JDBA and Knock-off. This is because their corresponding
generators generate more useful data to train the surrogates
with high agreement with the black-box target; (3) TDB,
the generative surrogate-based attack, achieves the second-
best performance, due to learning the joint distributions of
joint distribution of inputs and outputs rather than imitating
the target’s output for a given set of inputs; and (4) Finally,
our proposed IGSA achieves the highest success rates in all
cases. This is because IGSA is strengthened with an ad-
ditional signal, i.e., characteristics of adversarial examples,
which compensates for the inevitable unfaithfulness of the
learned surrogate to the target.

4.3. Ablation and Parameter Studies

We conduct two types of studies: (1) generator and data
ablation study: analyzes the effect of the quality of the po-
tential adversarial example distribution (enforced by Ly

sim

and Ly
divin Eq. (6)) on the success of the attack and the sen-

sitivity of the IGSA to the training data; and (2) attack and
parameter ablation study: examines the effect of guiding
signal enforces through Ldata in Eq. (10) and the plug-and-
play nature of the attack.

4.3.1 Generator and Data Ablation Study

Generator ablation study. We examine the effect of the
quality of the distribution learned by the generator and the
feedback it provides, on the attack success rate in both un-
targeted and targeted settings. We fix the surrogate across
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all attacks (the surrogate trained with the IGSA’s genera-
tor) and list the variants of our IGSA’s attack which uses
different generators feedback, by adding the generator con-
straints, i.e., “Base” (LGAN + Ly

cnt), L
y
sim, and Ly

div one
by one. Our results reported in Table 2 indicate the follow-
ing: (1) “Base” has the lowest success rates among all vari-
ants; (2) adding Ly

sim and Ly
div both improve the success

rates, while Ly
sim has a higher impact. This is because it

forces the generator to learn the distribution close to/on the
target’s decision boundaries which is where adversarial ex-
amples reside in general; (3) adding all constraints (IGSA’s
generator) leads to the best performance with approximately
20% of improvement over the “Base”. This highlights the
effectiveness of incorporating characteristics of adversarial
examples in the attack when the surrogate (shared across all
attacks) is not able to faithfully learn the target.

Data ablation study. As explained in Sec. 3.4.2.
IGSA’s generator requires a clean dataset to generate
realistic-looking samples. To examine the sensitivity of
IGSA to the dataset used for training, we train IGSA on
CIFAR-10 and a subset of CINIC-10, a dataset of downsam-
pled samples from ImageNet with same labels as CIFAR-
10 [4], and report the results in Figure 4d. While in our ex-
periments we mostly utilize the generator training data, our
results in Figure 4d illustrate that as long as the data used to
train IGSA has the same class labels as the dataset used to
train the black-box target, IGSA’s attack success rate does
not show noticeable difference.

4.3.2 Attack Ablation Study and Parameter Analysis

We demonstrate the effect of employing the characteris-
tics of adversarial examples by varying the parameter λ
in Eq. (10) and show the results in Figure 4c. To fur-
ther demonstrate the plug-and-play nature of our proposed
attack, we combine it with different white-box attacks
(FGSM, C&W, and PGD) and report the results in Figure 4a
and 4b. Our results demonstrate that incorporating the char-
acteristics of adversarial examples improves all white-box
attacks.

4.4. Further Analysis

Qualitative Analysis. To further analyze the quality
of the data generated by the IGSA’s generator, we visual-
ize the t-SNE [27] of all classes and individual classes and
show the results in Figure 5. For the sake of comparison,
we also visualize the IGSA-Base in which the generator is
trained with LGAN + Ly

cnt. Our visualization of all classes
illustrates that IGSA achieved higher inter-class similar-
ity and intra-class diversity, as classes are lying closer to
each other while being completely distinguishable, and each
class shares more boundaries with other classes. Our one-
class visualization further shows the diversity of the sam-

IG
SA

-B
as

e

-75 -50 -25 0 25 50 75

-75

-50

-25

0

25

50

75

100

-18 -16 -14 -12 -10 -8 -6 -4

-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6 8

-2

0

2

4

6

-4 -2 0 2 4 6

-4

-2

0

2

4

6

8

IG
SA

-100 -75 -50 -25 0 25 50 75 100

-100

-75

-50

-25

0

25

50

75

100

-6 -4 -2 0 2 4 6 8

-3

-2

-1

0

1

2

3

4

5

-8 -6 -4 -2 0 2 4 6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6
-8

-6

-4

-2

0

2

4

6

Figure 5. The t-SNE visualization of images for CIFAR-10 on
VGG-16. The first column illustrates the visualization for CIFAR-
10 all 10 classes the last three are the visualization of 3 randomly
selected individual classes.
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(a) ResNet-20 on CIFAR-10
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(b) VGG-19 on CIFAR-100

Figure 6. Kernel Density Estimation (KDE) plots for the distri-
bution of boundary losses for real and adversarial examples. The
dashed line represents the median boundary loss.

ples generated by the IGSA compared to the IGSA-Base.
Statistical Analysis. We plot the Kernel Density Esti-

mation (KDE) curves of the distribution of boundary loss
for the real (clean) samples, adversarial examples generated
on the white-box target using its gradients, and adversar-
ial examples generated by our IGSA in Figure 6. The Fig-
ure shows that IGSA successfully identifies a decent num-
ber of adversarial examples close to/on the target’s decision
boundary generated using the white-box attacks.

5. Conclusion
In this paper, we investigate the surrogate-based attacks’
low success rates through theoretical and empirical anal-
ysis and demonstrate that their surrogates fail to achieve
high fidelity to the target. We propose a new perspective
on surrogate-based attacks, which involves utilizing the ad-
versarial examples characteristics to strengthen the attack
on the surrogate. We propose a method to learn the dis-
tribution of adversarial examples, while training a surro-
gate and use that distribution to strengthen the attack. Our
framework results in remarkable improvement of 20% over
the SOTA. Note that, even though IGSA results in signif-
icant improvement, it increases the attack’s running time.
We plan to explore explicit generative models to improve
IGSA’s efficiency.
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